Ebbesen et al., Angw. Chem., 51, 1592-1596 (2012)
Ebbesen et al., Angw. Chem., 51, 1592-1596 (2012)
Ebbesen et al., Phys. Rev. Lett., 106, 196405 (2011)
Ebbesen et al., Phys. Rev. Lett., 106, 196405 (2011)
Ebbesen et al., Angw. Chem., 51, 1592-1596 (2012)
Ebbesen et al., Phys. Rev. Lett., 106, 196405 (2011)
Ebbesen et al., Angw. Chem., 51, 1592-1596 (2012)
Ebbesen et al., Chem. Phys. Chem., 14, 125-131 (2013)
Ebbesen et al., Phys. Rev. Lett., 106, 196405 (2011)
Ebbesen et al., Angw. Chem., 51, 1592-1596 (2012)
Ebbesen et al., Chem. Phys. Chem., 14, 125-131 (2013)
Ebbesen et al., Acc. Chem. Res., 49, 2403-2412 (2016)
Ebbesen et al., Phys. Rev. Lett., 106, 196405 (2011)
Ebbesen et al., Angw. Chem., 51, 1592-1596 (2012)
Ebbesen et al., Chem. Phys. Chem., 14, 125-131 (2013)
Ebbesen et al., Acc. Chem. Res., 49, 2403-2412 (2016)
Ebbesen et al., Science, 363, 615-619 (2019)
\[
P_{\ket{\alpha}\!\bra{\alpha}\rightarrow\ket{\beta}\!\bra{\beta}} (t) = C_{\alpha\beta}(t) = \mathrm{Tr}\Big[
\hat{\rho}_{\mathrm{nuc}}\ket{\alpha}\!\bra{\alpha}
\mathrm{e}^{\mathrm{i}\hat{H}t}\ket{\beta}\!\bra{\beta} \mathrm{e}^{-\mathrm{i}\hat{H}t}
\Big]
\]
\[
P_{\ket{\alpha}\!\bra{\alpha}\rightarrow\ket{\beta}\!\bra{\beta}} (t) = C_{\alpha\beta}(t) = \mathrm{Tr}\Big[
\hat{\rho}_{\mathrm{nuc}}\ket{\alpha}\!\bra{\alpha}
\mathrm{e}^{\mathrm{i}\hat{H}t}\ket{\beta}\!\bra{\beta} \mathrm{e}^{-\mathrm{i}\hat{H}t}
\Big]
\]
\[
C_{\alpha\beta}(t) \approx \frac{1}{(2\pi)^{F+S}}
\iint\iint \rho^W_\mathrm{nuc}(x, p)
P_\alpha^W(X,P) P_\beta^W(X(t), P(t))~
\mathrm{d}x\,\mathrm{d}p\,\mathrm{d}X\,\mathrm{d}P
\]
Some Mapping methods you may have heard of
Mean Field (Ehrenfest)
PBME (LSC I) LSC-IVR (LSC II)
mLSC Windowing (SQC)
Spin Mapping
FBTS PLDM
MACS, A. Kelly and J. Richardson, J. Chem. Phys., 150, 071101 (2019)
MACS, A. Kelly and J. Richardson, Farad. Discus., 221, 150-167 (2020)
Simple Matter - Hard Cavity
Simple Matter - Hard Cavity
\[
\hat{H} = \left(
\begin{array}{cc}
\varepsilon_1 & 0 \\
0 & \varepsilon_2 \\
\end{array}\right)
+ \sum\limits_{j=1}^{\textcolor{red}{200}} \mu \omega_j \lambda_j \textcolor{red}{R_j}
\left(
\begin{array}{cc}
0 & 1 \\
1 & 0 \\
\end{array}\right)
+ \sum\limits_{j=1}^{\textcolor{red}{200}} \hbar \omega_j a^{\dagger}_j a_j
\]
Simple Matter - Hard Cavity
Simple Matter - Hard Cavity
2-level system
MACS, A. Kelly and E. Geva, J. Chem. Phys. Lett., 12, 3163-3170 (2021)
Simple Matter - Hard Cavity
3-level system
MACS, A. Kelly and E. Geva, J. Chem. Phys. Lett., 12, 3163-3170 (2021)
Hard Matter - Simple Cavity
Hard Matter - Simple Cavity
\[\begin{align*}
\hat{H} = &\left(
\begin{array}{cc}
0 & \Delta \\
\Delta & -\varepsilon \\
\end{array}\right)
+ \frac{1}{2} \left[
\frac{P_s^2}{M_s} + M_s \omega_s^2\left(
\begin{array}{cc}
R_s^2 & 0 \\
0 & (R_s - R_\mathrm{A}^0)^2
\end{array}\right)
\right]\\
&+ \frac{1}{2} \sum\limits_{j=1}^{\textcolor{red}{100}}
\frac{P_j^2}{M_j} + m_j \omega_j^2 \Big(R_j - \frac{c_j}{M_j \omega_j^2}R_s \Big)^2\\
&+ \hbar g_c (a^{\dagger}_c + a_c)
\left(
\begin{array}{cc}
0 & 1 \\
1 & 0 \\
\end{array}\right)
+ \hbar \omega_c a^{\dagger}_c a_c
\end{align*}\]
Hard Matter - Simple Cavity
Hard Matter - Simple Cavity
\[k_{\mathrm{D}\to\mathrm{A}} = \int \mathrm{e}^{\mathrm{i}\varepsilon t} C_{FGR} (t) ~\mathrm{d}t\]
\[C_{FGR} (t) = \mathrm{Tr}\Big[\hat{\rho}^{eq} \mathrm{e}^{\mathrm{i}\hat{H}_{\mathrm{D}}t} \hat{\Gamma}_{\mathrm{DA}}\mathrm{e}^{-\mathrm{i}\hat{H}_{\mathrm{A}}t} \hat{\Gamma}_{\mathrm{DA}}\Big]\]
Hard Matter - Simple Cavity
LSC + FGR can give exact results
MACS, Y. Lai and E. Geva, J. Chem. Phys. Lett., 13, 2330-2337 (2022)
Take home message
Classical-like trajectories can yield accurate results for cavity-modified quantum dynamics.
Since they scale linearly with system size they can access
large, complex and multiple molecules and multiple cavity modes.
"Accurate and cost-effective cavity-modified quantum
dynamics from classical-like trajectories"